
Du kan være nysgerrig om, hvordan nyere generationer af processorer kan være hurtigere ved samme ur-hastighed som ældre processorer. Er det bare ændringer i fysisk arkitektur eller er det noget mere? Dagens SuperUser Q & A-indlæg har svarene på en nysgerrig læseres spørgsmål.
Dagens Spørgsmål og Svar-sessions kommer til vores side med SuperUser-en underafdeling af Stack Exchange, en community-driven gruppe af Q & A-websteder.
Foto med tilladelse til Rodrigo Senna (Flickr).
SuperUser-læser agz ønsker at vide, hvorfor nyere generationer af processorer er hurtigere med samme urthastighed:
Hvorfor ville en 2,66 GHz dual-core Core i5 være hurtigere end en 2,66 GHz Core 2 Duo, som også er dual-core?
Er dette på grund af nyere instruktioner, der kan behandle oplysninger i færre urcykler? Hvilke andre arkitektoniske ændringer er involveret?
Hvorfor er nyere generationer af processorer hurtigere med samme urens hastighed?
SuperUser-bidragsydere David Schwartz og gennembrud har svaret for os. Først op, David Schwartz:
Normalt er det ikke på grund af nyere instruktioner. Det er bare fordi processoren kræver færre instruktionscykler at udføre de samme instruktioner. Dette kan være af mange årsager:
- Store caches betyder mindre tid spildt og venter på hukommelse.
- Flere eksekveringsenheder betyder mindre tid på at vente på at begynde at fungere under en instruktion.
- Bedre grunde forudsigelse betyder mindre tid spildt Spekulativt udførelse af instruktioner, som aldrig rent faktisk skal udføres.
- Forbedringer i udførelse af enhedsenheder betyder, at der ikke er tid til at afslutte instruktioner.
- Kortere rørledninger betyder, at rørledninger fylder hurtigere.
Og så videre.
Efterfulgt af svar fra gennembrud:
Den absolutte endelige reference er Intel 64 og IA-32 Architectures Software Developer Manuals. De detaljerer ændringerne mellem arkitekturer, og de er en stor ressource for at forstå x86-arkitekturen.
Jeg anbefaler at du downloader de samlede volumener 1 til 3C (første download link på siden linket ovenfor). Volumen 1, kapitel 2.2 indeholder de ønskede oplysninger.
Nogle generelle forskelle, der er angivet i dette kapitel, går fra Core til Nehalem / Sandy Bridge-mikroarkitekturerne er:
- Forbedret filialprediktion, hurtigere opsving fra forkert forudsigelse
- HyperThreading Technology
- Integreret hukommelsescontroller, nyt cache-hierarki
- Hurtigere undtagelseshåndtering af flydende punkter (kun Sandy Bridge)
- Forbedring af LEA-båndbredde (kun Sandy Bridge)
- AVX-instruktionsudvidelser (kun Sandy Bridge)
Den komplette liste kan findes i linket ovenfor (Volumen 1, Kapitel 2.2).
Sørg for at læse mere af denne interessante diskussion via linket nedenfor!
Har du noget at tilføje til forklaringen? Lyde af i kommentarerne. Vil du læse flere svar fra andre tech-savvy Stack Exchange brugere? Se hele diskussionsgruppen her.
Sådan stopper du din iPhone fra at registrere dine hyppige steder
Det kan være lidt ubehageligt, når din iPhone ser ud til at kende din rutine, ligesom den har ESP. Dette vises ofte som meddelelser, f.eks. Når du kommer i din bil, og din telefon giver dig trafikforhold undervejs til din destination. RELATERET: Googles positionshistorik registrerer stadig din bevægelse Spørgsmålet er, hvordan kan din iPhone vide, hvor du skal hen?
Skal jeg deaktivere sidefilen, hvis min computer har en masse RAM?
Hvis du har en computer med en stor mængde RAM, vil du have fordele ved at deaktivere sidefilen eller skal du bare forlade godt nok alene? Dagens SuperUser Q & A diskuterer emnet for at hjælpe med at tilfredsstille en læsers nysgerrighed. Dagens Spørgsmål og Svar-session kommer til vores side med SuperUser-en underafdeling af Stack Exchange, en community-driven gruppe af Q & A-websteder.